
Artificial Intelligence Principles
6G7V0011 - 1CWK100

Dr. Peng Wang
Email: p.wang@mmu.ac.uk

Department of Computing and Mathematics

Tuesday, Nov. 19th, 2024

p.wang@mmu.ac.uk Artificial Intelligence Principles 1

Outline
Schedules
Search Algorithms

Local Search - Discrete
Search Algorithms

Local Search - Continuous - optional

p.wang@mmu.ac.uk Artificial Intelligence Principles 2

Outline
Schedules
Search Algorithms

Local Search - Discrete
Search Algorithms

Local Search - Continuous - optional

p.wang@mmu.ac.uk Artificial Intelligence Principles 3

Today’s Schedule
• Search algorithms we’ve learned

– Uninformed search
1. Breadth First Search (BFS)

2. Depth First Search (DFS)

3. Uniform Cost Search (UCS)

– Informed search
1. Greedy Best-First Search

2. A Star

• Local search
– Hill climbing

– Discrete and continuous space

p.wang@mmu.ac.uk Artificial Intelligence Principles 4

Outline
Schedules
Search Algorithms

Local Search - Discrete
Search Algorithms

Local Search - Continuous - optional

p.wang@mmu.ac.uk Artificial Intelligence Principles 5

Recaps
Tips for choosing an algorithm:
• Graph search

1. Loop detection, less efficient, but avoid search in the ‘wrong’ direction

• Tree search
1. No loop detection, could stuck in ‘loops’

Both work on ‘search trees’ generated by performing ‘what-if’ actions
on state space graph!

BFS DFS backtracking
Time complexity O(bd) O(bm) O(bm)
Space complexity O(bd) O(bm) O(m)

Action cost constant ≥ 0 0 any

Table 1: Algorithm comparison, b is the branching factor, m is the maximum depth
of the search tree, and 0 ≤ d ≤ m is an intermediate depth.

UCS and A* are at polynomial level. Action cost positive.
p.wang@mmu.ac.uk Artificial Intelligence Principles 6

Remember Nodes to Form a Solution

Figure 1: Remembering nodes to form a solution, that’s where complexity comes!

p.wang@mmu.ac.uk Artificial Intelligence Principles 7

Breadth First Search as an Example
S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Search

Tiers

Figure 2: An example of Breadth First Search

Note: Number of nodes visited attributes to time complexity. Number of
nodes stored to form a solution attributes to space complexity.

p.wang@mmu.ac.uk Artificial Intelligence Principles 8

What if We Don’t Remember Nodes?

Figure 3: Nodes are not remembered!

You do not care from which path an algorithm reaches the
maximum(minimum), as long as it finds it!
Notes: In machine learning/deep learning/optimisation, you have an
objective(cost) function, which is f (n) we mentioned before!
p.wang@mmu.ac.uk Artificial Intelligence Principles 9

Eight-Queen Problem

Move the eight queens along the corresponding column so they don’t attack
each other in the row, column, and diagonal direction. We don’t really care
how a solution is reached, as long as we find it!
p.wang@mmu.ac.uk Artificial Intelligence Principles 10

Problem Formulation - Climbing Mount Everest

Figure 4: Mount Everest with an elevation of 8,848.86 m (29,031.7 ft). Click on
Mount Everest - National Geographic to see more. image credits

p.wang@mmu.ac.uk Artificial Intelligence Principles 11

https://www.nationalgeographic.com/adventure/article/mount-everest-aerial-north-side-drone-photography
https://www.indexadventure.com/blog/where-is-mount-everest-located

Climbing Mount Everest - A Path Found

Figure 5: One possible solution! image credit

You can still enjoy the journey (path), but reaching the peak Everest (not
other peaks) matters (the most)! That’s your objective!

Goal oriented, path is less important, e.g. optimise objective (cost)
function in machine learning, etc.

p.wang@mmu.ac.uk Artificial Intelligence Principles 12

https://www.nationalgeographic.com/adventure/article/mount-everest-aerial-north-side-drone-photography

From 3D to 2D - hill climbing

Figure 6: Abstraction of the Mount Everest climbing

Click on Gradient descent to play, or paste the following link in your browser

https://bl.ocks.org/EmilienDupont/raw/aaf429be5705b219aaaf8d691e27ca87/?raw=true

p.wang@mmu.ac.uk Artificial Intelligence Principles 13

https://bl.ocks.org/EmilienDupont/raw/aaf429be5705b219aaaf8d691e27ca87/?raw=true

Local Search - hill climbing

Algorithm 1: Pseudocode of hill climbing

Input: Initial state s, objective function f
Output: A local maximum state g

1: current ← initial node with s as state
2: while true do
3: neighbors ← successors of current
4: neighbor ← neighbors with maximum f -value
5: if f (neighbor.state) ≤ f (current.state) then
6: break
7: end if
8: current ← neighbor
9: end while

10: return current.state

p.wang@mmu.ac.uk Artificial Intelligence Principles 14

Local Search - hill climbing

State space

Objective function

s0 D s2 Es1CBA s3

Figure 7: Hill climbing with different initial state

• Where to go if the initial state is s0
• Where to go if the initial state is s1

• Where to go if the initial state is s2
• Where to go if the initial state is s3

p.wang@mmu.ac.uk Artificial Intelligence Principles 15

Hill Climbing - pros and cons

s0 D s2 Es1CBA s3

Objective function

State space

Figure 8: Neighborhood

Sight issues, can only see neighbors

p.wang@mmu.ac.uk Artificial Intelligence Principles 16

Hill Climbing - pros and cons

s0 D s2 Es1CBA s3

Objective function

State space

Figure 9: Local maxima

Declare local maxima as global maxima

p.wang@mmu.ac.uk Artificial Intelligence Principles 17

Hill Climbing - pros and cons

s0 D s2 Es1CBA s3

Objective function

State space

?

Figure 10: Plateaus

Where to go?

p.wang@mmu.ac.uk Artificial Intelligence Principles 18

Variants - hill climbing

• Sideways move, and limit the number of consecutive sideways moves.
• Stochastic hill climbing

1. Random moves to uphill, rather than the steepest move

2. May find global maxima

3. Converges more slowly

• First-choice hill climbing
1. Uses Stochastic hill climbing strategy

2. Generate successors until one is better than the current state

• Random-restart hill climbing
1. Randomly generates a series of initial states

2. (Re) start from each initial state until a goal is reached

p.wang@mmu.ac.uk Artificial Intelligence Principles 19

Summary - hill climbing

The philosophy

• Start wherever (The location where you lost your compass is random)

• Repeat: move to the best neighboring state (what You did)

• If no neighbors are better than current, stop

Pros
• Generally much faster and more memory-efficient

1. Previous states are not remembered (NO closedset)

2. In contrast, tree/graph search keeps unexpanded alternatives on the frontier
(openset, ensures completeness)

Cons

1. Incomplete and suboptimal → remember greedy first-best search?

Question: Is always following the ‘(steepest ascent) uphill’ a good strategy?

p.wang@mmu.ac.uk Artificial Intelligence Principles 20

Application - The Travelling Salesman Problem (TSP)

Figure 11: Nodes are places, arcs are
accessibility, and numbers on arcs are
costs.

• Starting from city 1, the salesman
must travel to all cities once
before returning home

• The distance between each city is
given, and is assumed to be the
same in both directions

• Only the links shown are to be
used

• Objective - Minimise the total
distance to be travelled

• Current state: 1234567
Neighbors: 1254367, 1256347,
etc.

p.wang@mmu.ac.uk Artificial Intelligence Principles 21

Outline
Schedules
Search Algorithms

Local Search - Discrete
Search Algorithms

Local Search - Continuous - optional

p.wang@mmu.ac.uk Artificial Intelligence Principles 22

Local Search - continuous space

Recap: In Task environment:

Continuous vs. Discrete

• Continuous: If there are an infinite number of distinct environment states,
clearly defined percepts and actions, the environment is continuous

• Discrete: If there are a limited number of distinct environment states,
clearly defined percepts and actions, the environment is discrete

Facts

• Most real-world environments are continuous

• A continuous action space has an infinite branching factor

• Most algorithms we have covered are for discrete environment, apart from
hill climbing and simulated annealing

Think about building three airports in Romania, such that each
city has easy access to at least one of the airports?

p.wang@mmu.ac.uk Artificial Intelligence Principles 23

Local Search - continuous space

Arad 366

Bucharest 0

Craiova 160

Dobreta 242

Eforie 161

Fagaras 178

Giurgiu 77

Hirsova 151

Iasi 226

Lugoj 244

Mehadia 241

Neamt 234

Oradea 380

Pitesti 98

Rimnicu Vilcea 193

Sibiu 253

Timisoara 329

Urziceni 80

Vaslui 199

Zerind 374

Arad

𝐀 𝒙𝟏, 𝒚𝟏

B 𝒙𝟐, 𝒚𝟐

C 𝒙𝟑, 𝒚𝟑

Figure 12: Building three airports A, B, C in Romania

p.wang@mmu.ac.uk Artificial Intelligence Principles 24

Local Search - continuous space

Problem formulation:

• Six dimensional (6-D) state space defined by x = [x1, y1, x2, y2, x3, y3]T

• Successor function/cost function/objective function
f (x) = f (x1, y1, x2, y2, x3, y3)

• Initial state: can be random

• Goal state: a state that is the closest to a set of cities

For instance: Sum of squared distances from each city to nearest airport

f (x) = f (x1, y1, x2, y2, x3, y3) =
3∑

i=1

∑
c∈Ci

(
(xi − xc)2 + (yi − yc)2

)
, (1)

where Ci is the set of cities whose closest airport is airport i , i = 1, 2, 3.

Issue: Need to divide the cities into three sets. It is reasonable.

p.wang@mmu.ac.uk Artificial Intelligence Principles 25

Local Search - continuous space

Recap: Calculus and Numerical Analysis:

Given a surface z = f (x , y), and a point [x , y]T , the gradient is a vector

∇f (x , y) =
(∂f

∂x ,
∂f
∂y

)
, (2)

where, the vector points in the direction of the steepest slope, and its length is
proportional to the slope.

The gradient methods compute ∇f and use it to increase/reduce f . It can be
interpreted as ‘direction and rate of fastest increase’. Suppose we need to
minimise f , then we need the opposite direction, therefore we have

x← x− α∇f (x), (3)

where α is a small constant called the learning rate (step size).

If ∇f = 0, a local minima (could be global) is reached.

Issues: Too small α makes the process slow. Too big α may miss the minima.

p.wang@mmu.ac.uk Artificial Intelligence Principles 26

https://en.wikipedia.org/wiki/Gradient

Local Search - continuous space

Arad 366

Bucharest 0

Craiova 160

Dobreta 242

Eforie 161

Fagaras 178

Giurgiu 77

Hirsova 151

Iasi 226

Lugoj 244

Mehadia 241

Neamt 234

Oradea 380

Pitesti 98

Rimnicu Vilcea 193

Sibiu 253

Timisoara 329

Urziceni 80

Vaslui 199

Zerind 374

Arad

𝐀 𝒙𝟏, 𝒚𝟏

B 𝒙𝟐, 𝒚𝟐

C 𝒙𝟑, 𝒚𝟑

Figure 13: Building three airports A, B, C in Romania

∇f =
[

∂f
∂x1

, ∂f
∂y1

, ∂f
∂x2

, ∂f
∂y2

, ∂f
∂x3

, ∂f
∂y3

]T
, and if we find x = [x1, y1, x2, y2, x3, y3]T

such that ∇f (x1, y1, x2, y2, x3, y3) = 0, then x is what we need.

p.wang@mmu.ac.uk Artificial Intelligence Principles 27

Local Search - continuous space

Newton-Raphson Method
xn+1 = xn − f (xn)

f ′(xn) finds solution for equations of the form f (x) = 0!

Not familiar with Newton-Raphson method, have look at here!

Normally, we use x← x− f (x)
f ′(x) rather than xn+1 = xn − f (xn)

f ′(xn) . The former is
‘programming language’ friendly.

Our case has a 6-D state space, the Newton-Raphson method becomes

x← x− ∇f (x)
Hf (x) = x−H−1

f (x)∇f (x), (4)

where Hij = ∂2f /∂xi∂yj is the i-th row and j-th column entry of the Hessian
matrix Hf (x).

p.wang@mmu.ac.uk Artificial Intelligence Principles 28

https://brilliant.org/wiki/newton-raphson-method/

Local Search - continuous space

Suppose we devide the Romanian cities into three sets, and for set one C1,
let’s see how to build the Hessian matrix. ← critical

Hf (x) =

2|C1| 0 0 0 0 0
0 2|C1| 0 0 0 0
0 0 2|C1| 0 0 0
0 0 0 2|C1| 0 0
0 0 0 0 2|C1| 0
0 0 0 0 0 2|C1|

, (5)

where |C1| is the number of cities in set one.
∂f
∂xi

= 2
∑
c∈C1

(xi − xc), (6)

∂f
∂xi∂xj

= 2|C1|, (7)

if i = j , otherwise ∂f
∂xi ∂xj

= 0.

p.wang@mmu.ac.uk Artificial Intelligence Principles 29

Local Search - continuous space

Figure 14: Example of f and gradient

p.wang@mmu.ac.uk Artificial Intelligence Principles 30

Local Search - continuous space

Figure 15: Illustration of a possible solutions

p.wang@mmu.ac.uk Artificial Intelligence Principles 31

Local Search - continuous space

Challenges:

• Most of time, there is only one global minima/maxima, and a few local
minima/maxima, we want to find the global one

• Infinite number of states to search

• Ridges and plateaus still causes problems in continuous space.

Mitigation:

• Discretise the continuous space

• More advanced methods (See tutorial)

p.wang@mmu.ac.uk Artificial Intelligence Principles 32

Local Search - continuous space

Figure 16: An example of discretise the continuous space

p.wang@mmu.ac.uk Artificial Intelligence Principles 33

Reading Materials
Following are some materials that help with understanding local search
in continuous space.

Figure 17: Local search

p.wang@mmu.ac.uk Artificial Intelligence Principles 34

https://jackmckew.dev/3d-gradient-descent-in-python.html

Reference
• Linear Regression using Gradient Descent

p.wang@mmu.ac.uk Artificial Intelligence Principles 35

https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931

	Schedules
	Search Algorithms
	Local Search - Discrete

	Search Algorithms
	Local Search - Continuous - optional

