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Q1. Time and space complexity of BFS and DFS.
Q2. Pros and cons of hill climbing.

Q3. The advantages of Simulated annealing compared to hill climbing.

p.wang@mmu.ac.uk Artificial Intelligence Principles 4



. Manchester
Outline e

Search Algorithms
Simulate Annealing

p.wang@mmu.ac.uk Atrtificial Intelligence Principles 5



University

LOC&] Seal“Ch — Simulated Annealing &mﬂf’ﬁsﬁg‘

A
30 Minutes
Ta] Holdi ;
@ olding Time -
gl & O
b5} ) e}
=| & 2
g o Ta= Annealing Temperature Z
S |R 2.
= (350,400, 450 & 500 °C) 52
Time
Figure 1: Annealing example, image F|g;1.re 2: Annealing temperature, image
credits credits

‘In metallurgy, annealing is the process used to temper or harden
metals and glass by heating them to a high temperature and then
gradually cooling them, thus allowing the material to reach a
low-energy crystalline state.

Note: From hill climbing to gradient descent. Essentially the same, a *-’
difference, i.e., min f(x) <= max —f(x)
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https://macromoltek.medium.com/machine-learning-and-simulated-annealing-588b2e70d0cc
https://macromoltek.medium.com/machine-learning-and-simulated-annealing-588b2e70d0cc
https://iopscience.iop.org/article/10.1088/2399-6528/ab496f
https://iopscience.iop.org/article/10.1088/2399-6528/ab496f
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Takeaway from annealing

= A cool section is not good enough (otherwise why bother to reheat it?)

= Reheat it with a strategy

= Cool it down

= A better section (the same one, but good quality)

Sometimes one Sometimes one
needs to needs to move to an
temporarily step — | inferior neighbor in
back in order to order to escape a
move forward. local optimum.

Figure 3: Revisited history for a brighter future (Xiaojin Zhu)

Heated — Cool — Bad — Reheated — Cool — Better — - - -
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Algorithm 1: Pseudocode of the simulated annealing algorithm

Input: Initial temperature Temp, cost function f, scheduling function
schedule(current.state, neighbor.state, T)—exp(fM) time ¢

Output: A local maximum state g

1: current < initial node with s as state

2: for t € [1, sys.maxsize] do

3: T = Temp x exp(—\ x t), k =20, A =0.05
if T ~0 then

return current.state

end if
neighbor < random choice from neighbors
AE = f(current.state) — f(neighbor.state)
if AE > 0 then
10: current < neighbor  neighbor is better, always accept.
11: else

© X NO A

p.wang@mmu.ac.uk Artificial Intelligence Principles 8



Manchesger
LOC&] SearCh = Simulated Annealing II %:fv';;‘;;’t‘y‘““

12: if exp(—@) > random(0, 1) then

13: current <— neighbor  neighbor is worse, accept with a probability.
14: else

15: current <— current

16: end if

17:  end if

18: end for

On choosing temperature T

= High: almost always accept any new state
» Low: First-choice hill climbing

Tricks: Determine them via experiments!
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Codes on Moodle!
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Application = The Travelling Salesman Problem (TSP)

Figure 4: Nodes are places, arcs are
accessibility, and numbers on arcs are
costs.
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Starting from city 1, the salesman
must travel to all cities once
before returning home

The distance between each city is
given, and is assumed to be the
same in both directions

Only the links shown are to be
used

Objective - Minimise the total
distance to be travelled

Current state: 1234567
Neighbors: 1254367, 1256347,
etc.

Wikipedia has some interesting applications!

Have look at this video on how simulated annealing works!
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https://en.wikipedia.org/wiki/Simulated_annealing
https://github.com/jedrazb/python-tsp-simulated-annealing
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Pros
= Not much to say theoretically
— With infinitely slow cooling rate, finds global optimum with probability 1

— Proposed by Metropolis in 1953 based on the analogy that alloys manage to
find a near global minimum energy state, when annealed slowly.

= Easy to implement.

Cons

= Cooling scheme important

= Neighborhood design is the real ingenuity, not the decision to use SA
1. Permutation
2. Combinatorial problem

3. Eg. TSP
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https://csvisualized.eschirtz.com/##/demos/ep01
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Summary
= Local search in general
= Hill climbing
1. Maximise objective function
2. Could stuck in local optima, variants are less efficient
= Simulated annealing
1. Minimise cost function

2. Annealing guarantees to find global optima with probability 1
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